

Ganzheitliche Diagnostik und Therapie bei unklarer Erschöpfung

Webinar Doctaris 13.07.2023

Fatigue: Definition

- ist gekennzeichnet durch das Gefühl andauernder Müdigkeit und Erschöpfung.
- Im Unterschied zur peripheren Fatigue ist die zentrale Fatigue ZNS-induziert. Sie betrifft nicht nur physische sondern auch mentale, kognitive Funktionen.
- Während die periphere Fatigue allein durch physische Aktivitäten entsteht, wird die zentrale Fatigue durch physische und mentale Aktivitäten induziert.

Ursachen der Fatigue

Metabolismus/Endokrinum	Infektionen	Herz und Lunge	Medikation
Adrenale Fatigue Anämie Hypothyreoidismus Diabetes Elektrolytanomalien Nierenerkrankungen Lebererkrankungen M. Cushing	Mononucleose Hepatitis Tuberkulose Cytomegalie-Virus HIV-Infektion Influenza Andere infektiöse Erkrankungen	Herzinfarkt Koronare Herzerkrankung Herzklappen-Insuffizienz COPD Asthma Arrhythmien Pneumonie	Antidepressive Angstlösende Medikamente Sedativa Antihistaminika Steroide Blutdruck-Medikamente Medikamenten- und Drogenentzug

Mentale Gesundheit	Schlafprobleme	Vitamindefizite	Andere Gründe
Stress	Schlafapnoe	Vitamin B12-Defizit	Tumor
Depressionen	Reflux-Ösophagitis	Vitamin D Defizit	Rheuma
Ängste	Schlaflosigkeit	Folsäuredefizit	Autoimmunerkrankungen
Drogen- und Alkoholabusus	Narkolepsie	Eisendefizit	wie rheum. Arthritis, Lupus
Ernährungsstörungen	Schichtarbeit und deren		Schmerzen/Fibromyalgie
PTSD	Änderungen		Übergewicht
Trauer	Schwangerschaft		Chemotherapie
	Lange Arbeitszeiten		Bestrahlung

Eciel Gaudin

Neuroendokrine-immune Mechanismen von Verhaltens-Komorbiditäten bei Patienten mit Fatigue

Neuroendokrines System

- Abgeflachte Cortisol-Steigerung
- - Cortisolantwort auf Stress

Schlaf-Wach-Zyklus

- **V**Schlafeffizienz
- **\Pi**Wachzeiten
- Teinschlaf-Latenz,
 Unterbrechungen

Krebs
Strahlung
Infektion
Chemikalien
Stress
Zytokine

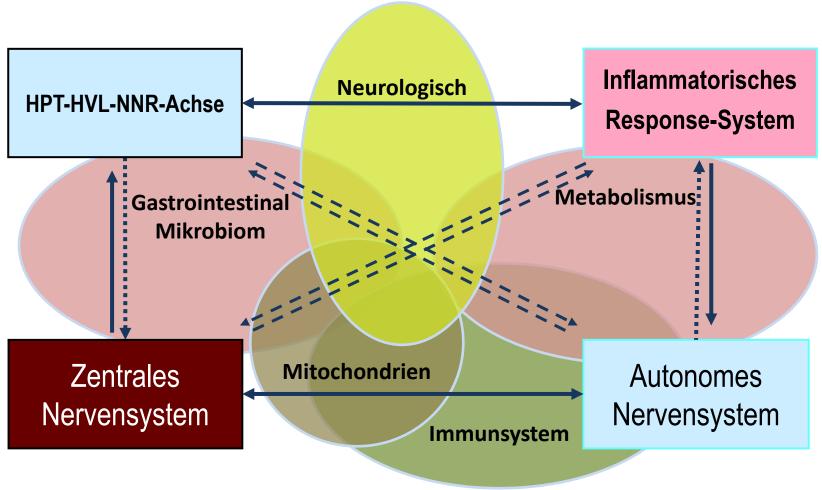
Entzündung

- Proinflammatorische Zytokine
- 🛧 Adhäsionsmoleküle
- Akut-Phase-Reaktantien

Zentrales Nervensystem

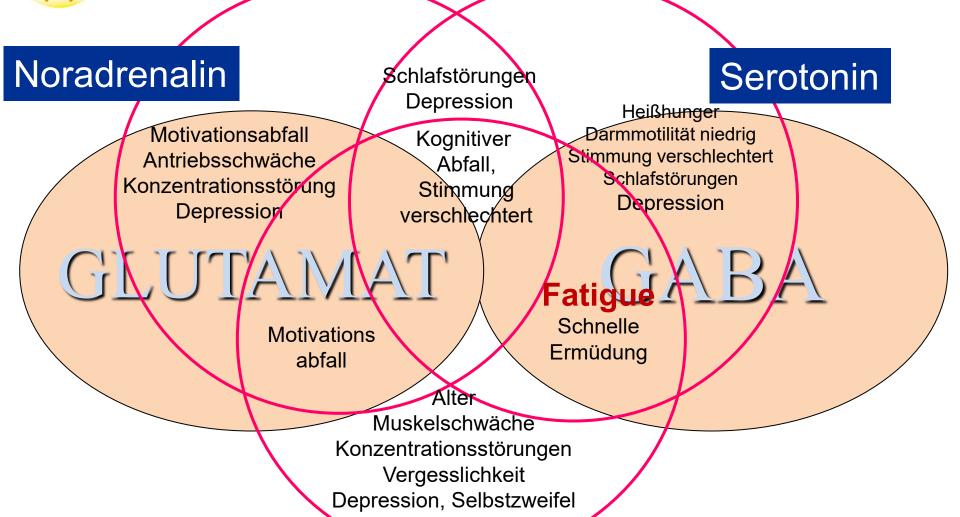
- · **♥** Wachstumsfaktoren
- ↑ NFkappaB/p38 MARK

Depression


Fatigue

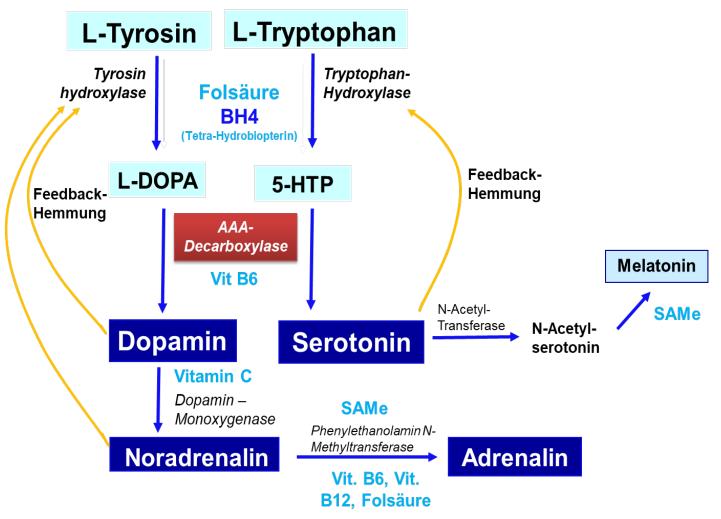
Schlafstörungen

Kognitive


Dysfunktion

Stress-Response-System

Überlappende Wirkungen der Neurotransmitter



Dopamin

Biosynthese der Katecholamine

parallel zur Serotoninbildung

Sickness-Effekte von Zytokinen

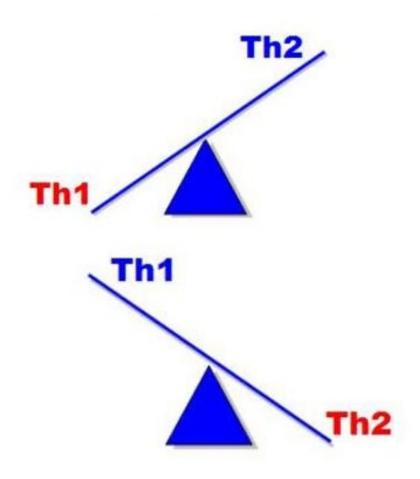
- Induktion von peripherem Corticotropinreleasinghormon CRH 2
 - (→ Autonomes Nervensystem)
- Glucocorticoid-Resistenz
- Hemmung der Neurogenese (BDNF)
- IDO-Aktivierung (Entzündung) (IDO1, IDO2, TDO)
 - → Kynurenin Chinolinsäure- Switch
- BH4-Hemmung (Tetrahydrobiopterin)
- SERT-Aktivierung (Serotonintransporter)
- DAT-Aktivierung (Dopamintransporter)

Chronic Fatigue und zirkulierende Zytokine

Summary of study results for cytokines at baseline/resting.

Cytokine		Higher in CFS subjects N studies (%)	Lower in CFS subjects N studies (%)	No difference N studies (%)	
Mixed pro/anti	TGF-β	5 (63%)	0 (0%)	3 (38%)	
Pro-inflammatory	IL-1β TNF IL-6 IL-1α LT-α INF-α	7 (25%) 5 (20%) 6 (21%) 3 (27%) 2 (33%) 1 (20%)	0 (0%) 0 (0%) 2 (7%) 0 (0%) 1 (17%) 0 (0%)	21 (75%) 23 (80%) 20 (71%) 8 (73%) 3 (50%) 4 (80%)	
Anti-inflammatory	IL-10 IL-13	2 (13%) 1 (9%)	1 (6%) 2 (18%)	13 (81%) 8 (73%)	
Th1	IL-2 IL-12 IFN-γ IL-15	3 (20%) 2 (18%) 2 (12%) 0 (0%)	3 (20%) 0 (0%) 1 (6%) 1 (20%)	9 (60%) 9 (82%) 14 (82%) 4 (80%)	
Th2	IL-5 IL-4	1 (13%) 2 (15%)	1 (13%) 0 (0%)	6 (75%) 11 (85%)	
Th17	IL-23 IL17	1 (25%) 0 (0%)	1 (25%) 2 (25%)	2 (50%) 6 (75%)	S Blundell et al. Brain Behav Immun 2015 50: 186-95
NK-cell attracting	IL-8	4 (29%)	2 (14%)	8 (57%)	59. 10627 Borlin

Praxis für ganzheitliche Orthopädie-Berlin Eciel Gaudin, Bismarckstraße 68, 10627 Berlin


T-Helferzellen TH1/TH2

TH1-Dominanz bei

- Depressionen
- Rheumatoider Arthritis
- ➤ Hashimoto/Autoimmunerkrankungen
- ➤ Morbus Crohn/Zoeliakie
- ➤ Multiple Sklerose
- Psoriasis

TH2-Dominanz bei

- ➤ Pollenallergie/Ekzembildung/Asthma
- > Histaminunverträglichkeit
- ➤ Nahrungsmittelunverträglichkeiten
- Chronic Fatigue
- > Herpes (reaktiv)
- EBV (persistent+reaktiv)
- > COPD
- Colitis ulcerosa

EBV-Fatigue

- 40-65 % der Erstinfektionen bei Klein/Kindern sind asymptomatisch.
- Ca. 25% der Erstinfektionen bei Heranwachsenden/ Erwachsenen sind symptomatisch (IM – infektiöse Mononukleose bzw. Pfeiffer'sches Drüsenfieber)
- Bei ca. 50 % besteht auch 2 Monate nach der IM noch ausgeprägte Symptomatik
- Bei ca. 10 % Symptomatik auch noch 6 Monate nach IM
- < 1% chronisch aktive EBV-Infektion (CAEBV)</p>
 CAEBV: T- NK-Cell lymphoproliferative Disease; 3 y survival rate without treatment only 16,7 ± 10 %
- Muster individueller Symptome zur Fatigue bis zu 12 Monaten: Akutes Krankheitsgefühl, Muskelschmerzen und Neurokognitive Störungen (I Hickie et al. BMJ 2006; 333(7568); 575)

Resultierende ganzheitliche Diagnostik

Diagnostik

- Neurostress Profil
- HRV-Messung
- Microbiom/Darm-Check
- Immunsystem: Infektionen, Zytokine
- Mineralstoffprofil
- Vitamine
- Schwermetalle

ARMGESUNDHEIT

1

Fallbeispiel:

Patientin, 57 Jahre alt Postivirales Erschöpfungssyndrom, Sodbrennen. Stressbelastung, Müdigkeit/Fatigue, Fibromyalgie, depressiveVerstimmungen, häufige Infekte, Ängste/Panikattacken, Kopfschmerzen/Migräne, Meteorismus/Blähungen, Übergewicht/Adipositas, Völlegefühl nach dem Essen, **Fettleber**

Lab4more GmbH

Praxis für ganzheitliche Orthopädie-Berlin Eciel Gaudin, Bismarckstraße 68, 10627 Berlin

NGS-Mikrobiomanalyse

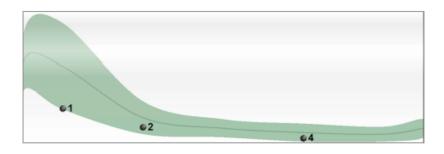
Mukonutritive Bakterien			Laktatbildner und Saccharolytische Bakterien				
Faecalibacterium prausnitzii	17,263		> 3,5	Lactobacillus spp.	3,408	•	> 0,2
Akkermansia muciniphila	↓ 0,004		> 0,1	Bifidobacterium spp.	↓ 0,073	•	> 0,1
Roseburia intestinalis	0,918	•	> 0,4	Bifidobacterium adolescentis	0,060	•	> 0,01
Bacteroides thetaiotaomicron	0,734		> 0,4	Enterococcus spp.	↓ 0,000		> 0,01
Bifidobacterium longum	↓ 0,009	•	> 0,01	Ruminococcus bromii	0,148	•	0,1 - 0,8
Ruminococcus gnavus	↓ 0,001	•	> 0,002	Immunmodulierende Bakte	erien		
Prevotella spp.	↓ 0,088		0,1 - 6,8	Lactobacillus spp.	3,408	•	> 0,2
Buttersäurebildende Bakterien			Escherichia coli	↓ 0,004		0,1 - 1	
			> 3,5	Enterococcus spp.	↓ 0,000		> 0,01
Faecalibacterium prausnitzii	17,263	•	7 5,5	Formally lide and a Delete of an	•		
Ruminococcus spp.	↓ 0,983	•	> 1	Equolbildende Bakterien			
Eubacterium spp.	3,458	•	> 2,2	Eggerthellaceae	↓ 0,017		> 0,02
Eubacterium rectale	1,264	•	> 0,3	Eggerthella lenta	↓ 0,000		> 0,01
Baselowie intestinalia	,		> 0,4	Adlercreutzia spp.	↓ 0,000		> 0,01
Roseburia intestinalis	0,918	•	70,4	Slackia spp.	0,012	•	> 0,01
Anaerobutyricum hallii	0,035	•	> 0,03	отаки оррг	3,522		
Coprococcus spp.	↓ 0,003	•	> 0,01	LPS-tragende Bakterien			
Butyrivibrio crossotus	0,001	•	> 0,01	Sutterella spp.	↑ 4,042	•	< 2,5
Clostridium butyricum	↓ 0,000		> 0,01	%			

Lab4more GmbH

Neurostressprofil Kreatinin (MU2) 69,8 mg/dl

Kreatinin wird mit relativ konstanter Rate über den Urin ausgeschieden. Somit kann durch Bezug der Urinkonzentrationen anderer Substanzen auf Kreatinin der Effekt von Unterschieden in der Harn konzentration rechnerisch ausgeglichen werden.

Der Bezug auf den Kreatiningehalt der Urinprobe gilt als übliches Normierungsverfahren, allerdings ist bei sehr niedrigen Kreatininkonzentrationen (<20mg/dl) dieser Rechenwert in der Regel nicht aussagekr äftig, es kann zu falsch erhöhten Bezugswerten kommen.


Neurostress Befund

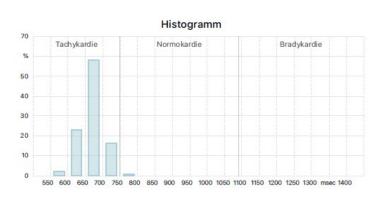
Therapeutischer Bereich bis 800 μg/g Krea

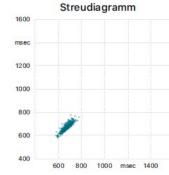
GABA (MU2) 7,96 3 - 13.6 μmol/gKrea Glutamat (MU2) 8 - 25 μmol/gKrea 17,35

Cortisol Tagesprofil

Cortisol Früh 2 SP (1)	5,62	•	5,5 - 19,3	nmol/l			
Cortisol Mittag SP (2)	2,60	•	1,5 - 6,8	nmol/l			
Cortisol Abend SP (4)	0,82	•	0,3 - 3,2	nmol/l			
DHEA Früh 2 SP	87,69	•	75 - 235	pg/ml			
Hormonersatztherapie (HRT):							
	Frauen	Männer					

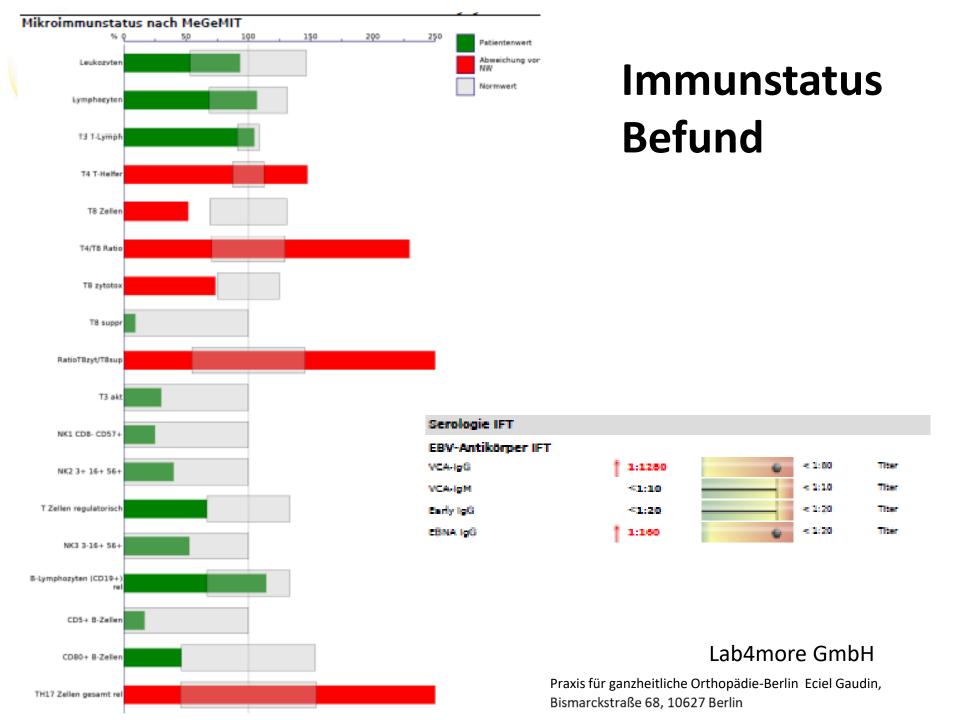
Oral (5-10mg) 80 - 240 pg/ml 120 - 335 pg/ml Dermal (5mg) 135 - 400 pg/ml 105 - 300 pg/ml DHEA Abend SP 45 - 139 50,04


Lab4more GmbH


pg/ml


Rhythmogramm 1600 msec 1200 1000 800 600 400 200 400 800 120 160 200 240 280 320 360 400 440 480

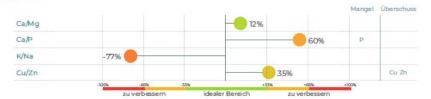
HRV Messung Befund



Hauptparameter der VNS Analyse

Die Messung zeigt eine Sympathikotonie.

Mineralstoffmessung (SO Check)


MINERALSTOFF - BILANZ

BILANZ DER TOXISCHEN METALLE

RATIOS

VITAMINE

Therapie:

- Darmsanierung
- Ernährungsumstellung
- Stressmanagement, Änderung Lebensstil
- Orthomolekularetherapie
- Microimmuntherapie
- Infusionstherapie
- Ozonsauerstofftherapie

Therapie: Darmsanierung

- Bitterstoffe hoch dosiert: z.B. 7-Kräuter Elixier
- Präbiotikum, z.B. Mucosa Liv (Akazienfaser, resistente Stärke, Glutamin...)
- Omega-3-Fettsäuren+ Astaxanthin: z.B. Krillöl
- Colozym (v.a. Verdauungsenzyme für komplexe Zucker)
- Inflasan (Weihrauch, Curcuma, Teufelskralle....)
- Probiotikum: z.B. Neurobiotic

Therapie: Orthomolekular:

- Serotoninaufbau: z.B. Serene Pro
- Serotonin/Katecholamin-Balance: z.B. Balance DS
- Mitochondrien: z.B. Q10-Ubiquinol 100
- Methylierung: z.B. SAMe
- B-Vitamine/Homocystein-Senkung: z.B. Homocyst

Therapie: Microimmuntherapie:

2L INFLAM

2L MIREG

2L MISEN

2L EID

2L EBV

Therapie: Infusionstherapie:

- Vitamin C 7,5g
- L-Lysin
- Taurin
- Elektrolyte
- Glycin
- L-Methionin
- Phenylalanin

- N-Acetyl-Tyrosin
- B-Komplex,
- 5-MTHF (Folsäure)
- Adenosylcobalamin
- Methylcobalamin
- Glutathion
- Alpha Liponsäure

Therapie: Ozonsauerstofftherapie:

Hyperbare Ozonsauerstofftherapie:

250 ml Blut mit initial 40 ug/ml Ozongemisch bis max. 70 ug/ml in Etappen steigern

Vielen Dank für Ihre Aufmerksamkeit!